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aUniversity ”Politehnica” of Timişoara, Department of Physics,
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Using the Klauder-Perelomov coherent states of the pseudoharmonic oscillator Hamiltonian,
corresponding diagonal P -representation for the density matrix of the gas of pseudoharmonic
oscillators in thermal equilibrium is constructed. With a help of this new result, some corre-
sponding characteristic thermal expectation values are obtained.
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1 Introduction

The pseudoharmonic oscillator (PHO) potential [1,2] is an anharmonic potential, which, like the
harmonic oscillator (HO) potential, also allows an exact mathematical treatment. This potential
may be considered in a certain sense as an intermediate potential between the harmonic oscil-
lator potential (an ideal model) and anharmonic potentials (which are more realistic). A com-
parative analysis of potentials HO-3D (3-dimensional harmonic oscillator potential) and PHO is
performed in [2].

In the present work, we examine some properties of the Klauder-Perelomov coherent states
of the pseudoharmonic oscillator. Using properties of these states we construct, in Section 3,
the diagonal P -representation of the density operator for the PHO quantum canonical gas. This
is the main new result of this work. Using it, we also derive expressions for some significant
expectation values for this physical system.

2 Klauder-Perelomov coherent states for PHO

The effective potential of the PHO is
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where r0 is the equilibrium distance between the diatomic molecule nuclei and J = 0, 1, 2, . . .

is the rotational quantum number.
This potential has been treated in detail previously so we will only recall some formulae that

will be need.
Using Molski’s techniques [3] (for the Morse oscillator) in our previous paper [4], we have

rewritten the PHO effective potential as follows:
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By using the substitution ω = 2ω0 and the dimensionless variable y =
(

mω0

h̄

)
1
2 r, the cor-

responding rovibrational Schrödinger equation for the reduced radial function uλ
v (r) and the

dimensionless Hamiltonian is [4]
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uλ
v (y) = 0. (5)

In the previous paper [4], we have demonstrated that the SU(1, 1) is the natural dynamical group
associated with the bounded states of the PHO. The discrete representations of the SU(1, 1)
group are given by

K2|v, k〉 = k(k − 1)|v, k〉, (6)

K+|v, k〉 =
√

(v + 1)(v + 2k)|v + 1, k〉, (7)

K−|v, k〉 =
√

v(v + 2k − 1)|v − 1, k〉, (8)

where v is the vibrational quantum number, k = 1
2 (λ + 1) > 1

2 and the PHO realization of the
raising and lowering operators K± is
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1

2
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)

. (9)

Generally, the Klauder-Perelomov coherent states are obtained if the generalized displacement
unitary operator exp (αK+ − α∗K−) on the lowest state of the quantum system |v = 0, k〉 are
applied [5–7]:

|z, k〉 = exp (αK+ − α∗K−)|0, k〉 = ezK+eΓK3e−z∗K− |0, k〉, (10)
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where α = − 1
2θ e−iϕ, z = α

|α| tanh |α| = − tanh θ
2 e−iϕ and where the group generator K3 is

K3 =
1

2
[K−, K+] , Γ = ln (1 − |z|2). (11)

The parameters θ ∈ (−∞,∞) and ϕ ∈ [0, 2π] are group parameters similar to the Euler angles.
The condition |z| < 1 shows that the SU(1, 1) KP-CSs |z, k〉 are defined in the interior of the
unit disc. In terms of the basis vectors |v, k〉, using the equations (7) and (8) and the equation

K3|v, k〉 = (k + v)|v, k〉, (12)

the KP-CSs of the PHO may be expanded as

|z, k〉 = N (|z|2)
∞
∑

v=0

zv

√

ρ(v; k)
|v, k〉, (13)

where

ρ(v; k) =
Γ(v + 1)Γ(2k)

Γ(v + 2k)
= (2k − 1)B(v + 1; 2k − 1) (14)

and B(a; b) is the Euler beta function.
We note here that in agreement with the choices of ρ(v; k), there are many different families

of coherent states, as illustrated in a series of recent works [8–11]. The normalization constant
N (|z|2) is obtained from the normalization condition 〈z, k|z, k〉 = 1, so that

[
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]−2
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where pFq(. . .) is the generalized hypergeometric function, while (a)v = Γ(a+v)
Γ(a) is the Poch-

hammer symbol [12]. Finally, the KP-CSs of the PHO are

|z, k〉 = (1 − |z|2)k

∞
∑

v=0

zv

√

ρ(v; k)
|v, k〉. (16)

The overlap of two KP-CSs of the PHO (the scalar product) is

〈σ, k|z, k〉 =
(1 − |σ|2)k(1 − |z|2)k

(1 − σ∗z)2k
, (17)

where σ and z are the complex numbers.
We need to calculate the convergence radius R [9]

R = lim
v→∞

v
√

ρ(v; k). (18)

In view of the limit [12]

lim
x→∞
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Γ(x)xa
= 1 (19)



448 D. Popov et al.

it is not difficult to prove that, for the KP-CSs of the PHO, we have R = 1. Then
∫

dµ(z, k)|z, k〉〈z, k| = I, (20)

with the integration measure

dµ(z, k) =
d2z

π
Wk(|z|2), d2z = d(Rez)d(Imz) = dϕ dr r, (21)

where z = r exp (iϕ), r ∈ [0, 1], ϕ ∈ [0, 2π].
In order to determine the unknown weight function, after the angular integration, we obtain

∞
∑

v=0

|v, k〉〈v, k|

ρ(v; k)

∫ R

0

dr r2v+1Wk(r2) (1 − r2)2k = I, (22)

from which the following infinite set of equations results:
∫ R

0

dr r2v+1Wk(r2) (1 − r2)2k = ρ(v; k), v = 0, 1, 2, . . . , 0 ≤ R < ∞. (23)

The quantities ρ(v; k) > 0 are then the power moments of the new unknown function

hk(r2) =
1

(1 − r2)2k
Wk(r2) (24)

and the problem stated in (23) is the Hausdorff (R < ∞) moment problem [9]. After the variable
change x = r2, we have

∫ R

0

dx xvhk(x) = Γ(2k)
Γ(v + 1)

Γ(v + 2k)
. (25)

In the above Hausdorff moment problem we extend the integer values of v to the complex
values s, so that v → s − 1 and rewrite it as

∫ R

0

dx xs−1hk(x) = Γ(2k)
Γ(s)

Γ(2k − 1 + s)
. (26)

As is usual in such a problem [8, 10], it is convenient to define

gk(x) =

{

hk(x), 0 ≤ x ≤ R

0, R < x < ∞

}

(27)

and to interpret (26) as the Mellin transform g∗
k(s) of gk(x2):

∫ ∞

0

dx xs−1gk(x) ≡ g∗k(s)
def
= M [gk(x); s] = Γ(2k)

Γ(s)

Γ(2k − 1 + s)
. (28)

The explicit formula for obtaining gk(x) from g∗
k(s) is given by

gk(x) =
1

2πi

∫ c+i∞

c−i∞

ds x−sg∗k(s)
def
= M−1 [g∗k(s); x] , (29)
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which denotes the inverse Mellin transform.
Using the definition of the Meijer’s G-function and Mellin inversion theorem it follows that

[13]:
∫ ∞
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Comparing equations (26) and (30), we obtain that [13]

hk(x) = Γ(2k)G1,0
1,1

(

x

∣

∣

∣

∣

∣

2k − 1
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)

= (2k − 1)(1 − x)2k−2, (31)

so that the weight function Wk(|z|2) becomes

Wk(|z|2) = (2k − 1)
1

(1 − |z|2)2
. (32)

This is a positive function for |z| < 1 and k > 1
2 . Therefore, the integration measure (21) finally

is

dµ(z, k) =
2k − 1

π

d2z

(1 − |z|2)2
. (33)

The sufficient condition for the solution (32) to be unique is given by the Carleman condition
[7, 8]: if the solution of the problem (26) exists then

S
def
=

∞
∑

v=1

[ρ(v; k)]
− 1

2v =

{

∞, the solution is unique
< ∞, non-unique solutions exist . (34)

It is not difficult to prove using the mathematical analysis test methods (e.g. the logarithmic or
d’Alembert test), for the function ρ(v; k) defined by (14), that the sum S diverges. So, the weight
function for the KP-CSs of the PHO is unique.

3 P -representation for PHO canonical gas density matrix

We consider a quantum canonical gas of PHOs in thermodynamical equilibrium with a thermostat
at temperature T = (kBβ)−1, where kB is the Boltzmann’s constant and β-the well-known
temperature parameter.

By using the equation (3) and taking into account that the Bargmann index is k = 1
2 (λ +1)),

the corresponding normalized canonical density operator for a fixed rotational quantum number
J (or, equivalently, for a fixed number k), is

ρJ ≡ ρk =
1

Zk

∞
∑

v=0

e−βEvJ |v, k〉〈v, k|, (35)
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where ZJ = Zk is the normalization constant, i.e. the partition function for a certain rotational
state J and

EvJ = h̄ω02k − mω2
0r

2
0 + 2h̄ω0v ≡ E0,J + 2h̄ω0v. (36)

The average value of normalized canonical density operator in the KP-CS representation, i.e. the
Husimi’s distribution function, is

〈z, k|ρk|z
′, k〉 =

1

Zk

e−βE0,J

(

√

(1 − |z|2)k(1 − |z′|2)k

1 − z∗z′e−βh̄ω0

)2k

. (37)

By normalizing the density operator to unity, i.e. requiring that

Trρk =

∫

dµ(z, k)〈z, k|ρk|z, k〉 = 1 (38)

we obtain the expression for the partition function of the PHO (for the fixed rotational state J):

Zk = eβmω2
0r2

0−βh̄ω0(2k−1) 1

2 sinhβh̄ω0
, (39)

where the exponential represents the contribution of the anharmonicity.
Using these results, we can write the Husimi distribution function as follows:

〈z, k|ρJ |z, k〉 ≡ 〈ρk〉z,k =
(

1 − e−βh̄ω0
)

(

1 − |z|2

1 − |z|2e−βh̄ω0

)2k

. (40)

Let us now perform the diagonal expansion of the density operator in the KP-CSs:

ρk =

∫

dµ(z, k) |z, k〉Pk(|z|2)〈z, k|. (41)

In order to find the quasi-probability distribution function Pk(|z|2) let us note that the equation

〈f |ρk|g〉 =

∫

dµ(z, k) 〈f |z, k〉Pk(|z|2)〈z, k|g〉 (42)

must be fulfilled for any arbitrary vectors 〈f | and |g〉 from the Hilbert space. Using equation
(35), the left-hand side of (42) becomes

LHS ≡
1

Zk

∞
∑

v=0

e−βEvJ 〈f |v, k〉〈v, k|g〉, (43)

while, after the angular integration and the variable change x = r2, the right-hand side may be
represented in the form

RHS ≡ (2k − 1)

∞
∑

v=0

〈f |v, k〉〈v, k|g〉

ρ(v; k)

∫ 1

0

dx xv(1 − x)2k−2Pk(x). (44)

Comparing the LHS and the RHS, we conclude that
∫ 1

0

dx xv(1 − x)2k−2Pk(x) =
1

2k − 1

1

Zk

e−βE0,J ρ(v; k) e−2βh̄ω0v , (45)
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which, after the function change,

Pk(x) =
1

Zk

e−βE0,J
1

(1 − x)2k−2
gk(x), (46)

leads to the integral equation
∫ 1

0

dx xvgk(x) =
(

e−2βh̄ω0
)v

B(v + 1; 2k − 1)

= Γ(2k − 1)
1

(e2βh̄ω0)
v

Γ(v + 1)

Γ(v + 2k)
. (47)

The method of solving this equation is the same as the one for obtaining the weight function
Wk(|z|2) (32), i.e. the solving of the Hausdorff moment problem. Using equation (30) and the
tables of the Meijer’s G-functions [13], we obtain

gk(x) = e2βh̄ω0Γ(2k − 1)G1,0
1,1

(

x

∣

∣

∣

∣

∣

2k − 1
0

)

= e2βh̄ω0
(

1 − e2βh̄ω0x
)2k−2

. (48)

We can finally write for the P-distribution function

Pk(|z|2) =
(

e2βh̄ω0 − 1
)

(

1 − e2βh̄ω0 |z|2

1 − |z|2

)2k−2

. (49)

Using the tabular integrals it is not difficult to prove that this function satisfies the normalization
condition

∫

dµ(z, k) Pk(z) = 1. (50)

In this way, the diagonal representation of the normalized density operator of the PHO in KS-CSs
is

ρk = (2k − 1)
(

e2βh̄ω0 − 1
)

∫

d2z

π

1

(1 − |z|2)2

(

1 − e2βh̄ω0 |z|2

1 − |z|2

)2k−2

|z, k〉〈z, k|, (51)

which fulfills the normalization condition (38).
The thermal expectation value (the thermal average) of an observable A concerning the PHO

is given by

〈A〉k = Tr(ρkA) = (2k − 1)
(

e2βh̄ω0 − 1
)

× (52)

×

∫

d2z

π

1

(1 − |z|2)2

(

1 − e2βh̄ω0 |z|2

1 − |z|2

)2k−2

〈z, k|A|z, k〉.

In many cases (e.g. with the aim of calculating the thermal averages of the powers of the number
operator N ) it is necessary to solve the integrals of the following kind [12]:

Ilm ≡

∫ 1

0

xl(1 − x)−2k−m(1 − Ax)2−2k (53)

=
Γ(l + 1)Γ(1 − 2k − m)

Γ(2 − 2k + l − m)
2F1(2 − 2k, l + 1; 2− 2k + l − m; A)
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and, besides that, to use the following property of the hypergeometric function 2F1(. . .) [14]

2F1(a, b; b − n; z) =
1

(1 − z)a+n

n
∑

k=0

(−n)k(b − a − n)k

(b − n)k

zk

k!
. (54)

By using these results, we obtain the thermal expectation values of the number operator N and
the square of the number operator N 2 respectively

〈N〉k = 2k(2k − 1)
(

e2βh̄ω0 − 1
)

I11 =
1

e2βh̄ω0 − 1
≡ 〈N〉 = n (55)

〈N2〉k = 2k(2k − 1)
(

e2βh̄ω0 − 1
)

(I12 + 2kI22) = (56)

=
1

e2βh̄ω0 − 1
+ 2

1

(e2βh̄ω0 − 1)
2 ≡ 〈N2〉 = n(1 + 2n).

These expectation values are independent of the index k. The thermal expectation of the number
operator N is the same as the expression of the Bose-Einstein thermal distribution (thermal mean
occupancy n)

n =
1

e2βh̄ω0 − 1
, (57)

which shows that the PHO is suitable for associating it with a boson (e.g. a photon or phonon).
We can now calculate the thermal second-order correlation function (g2)k.

(g2)k ≡
〈N2〉 − 〈N〉

〈N〉2
= (g2) = 2 (58)

and the thermal analogue of the Mandel parameter also Qk [15, 16]:

Qk ≡ 〈N〉
[

(g2) − 1
]

= 〈N〉 = n. (59)

The total normalized density operator which characterizes the quantum gas of pseudohar-
monic oscillators is

ρ =
1

Z

∑

J

(2J + 1)ZJρJ , (60)

where ρJ ≡ ρk is the diagonal representation of the density operator for the rotational state J

(see equation (51)).
Consequently, the total thermal expectation value of an observable A is

〈A〉 = TrAρ =
1

Z

∑

J

(2J + 1)ZJTrAρJ , (61)

where TrAρJ = 〈A〉J = 〈A〉k is the expectation value for the rotational state J . Similarly, the
total partition function is

Z =
∑

J

(2J + 1)
∑

v

e−βEvJ =
∑

J

(2J + 1)ZJ , (62)
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where ZJ = Zk is the partition function for the rotational state J (see equation (39)).
Let us note here that the HO-3D can be considered as an appropriate limit of the PHO. This

limit is called the harmonic limit of the PHO and for a certain physical observable A is defined
as [17]

lim
ω→2ω0

r0→0

α→J+ 1
2

F (PHO) ≡ lim
HO

F (PHO) = F (HO−3D), (63)

where the quantities with the superscript (PHO) corresponds to the PHO with the angular fre-
quency ω , while the same quantities with the superscript (HO−3D) corresponds to the HO-3D
(with the frequency ω0).

By applying to the harmonic limit (63), all results and equations obtained in the present
paper for PHO lead to the corresponding results and equations for the HO-3D. This fact may be
considered as a good check of the correctness of our results.

To conclude, our new results for PHO obtained in terms of Klauder-Perelomov coherent
states are encouraging, and we believe that these results may contribute to a better understanding
of the behaviour and properties of the PHO.
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